Интернет. Компьютер. Помощь. Советы. Ремонт

Основные части вертолета. Как устроен вертолет? По типу управления

Если не так давно, каких-то три-четыре года назад, модель вертолета была редкостью, и посмотреть на нее сбегались все люди, находившиеся на поле в зоне видимости, то сегодня это довольно распространенное направление моделизма. В настоящее время рынок буквально завален всеми видами моделей вертолетов, начиная от комнатных «микро» и заканчивая бензиновыми и турбореактивными монстрами. Все они, разные по внешнему виду и назначению, тем не менее, имеют очень много общего в конструкции и в оснащении. Эта статья - о схожести и конструктивных различиях моделей вертолетов.

Механика

Модель вертолета довольно сложна. Для того чтобы вам было легче ориентироваться в инструкции, начнем с обзора механики. Эта информация предназначена не только для тех, кто хочет самостоятельно собрать модель из набора (KIT), но также пригодится и тем, кто просто хочет познакомиться с устройством вертолета поближе.

Рама

Рама – это основной элемент конструкции вертолета. На нее крепятся узлы и агрегаты модели: двигатель, редуктор, ротор, хвост, декоративный фонарь, электроника. Рама обеспечивает взаимное расположение всех этих элементов в соответствии с компоновкой, которая, в свою очередь, должна не только давать возможность сбалансировать модель, но также учитывать взаимную совместимость узлов. Например, приемник и гироскоп стараются отодвигать дальше от двигателя с его повышенной вибрацией; провода – дальше от движущихся и горячих частей; топливную систему – поближе к двигателю и так далее. При проектировании вертолетов, компоновке и весовым характеристикам уделяется очень большое внимание.

Основная характеристика рамы – ее жесткость. В общем случае, чем рама жестче, тем лучше. Однако, «ужесточение» рамы отражается либо на ее весе (в случае использования дополнительных силовых элементов), либо на ее цене (в случае использования композитных материалов). В полете, при выполнении фигур, особенно фигур 3D пилотажа, вертолет подвергается большим нагрузкам. Недостаточно жесткая рама при этом «играет», что отрицательно сказывается на управляемости модели.

Рама – компромисс между жесткостью, легкостью и стоимостью производства. В подавляющем большинстве случаев, рама покупного вертолета обладает достаточной жесткостью для выполнения стандартных фигур пилотажа. Для экстремального пилотажа производители предлагают либо «апгрейды», повышающие жесткость конструкции, либо замену рамы целиком на более жесткую и легкую, например из карбона.

По конструкции рамы вертолетов можно разделить на «цельные», штампованные из пластика, и «сборные» - из пластин и металлических элементов.

Как правило, модели хобби-класса имеют обычную пластиковую раму, состоящую из двух половинок. Между ними зажимаются подшипники и некоторые другие элементы. Половинки рамы стягиваются между собой шурупами-саморезами. Преимуществом такой рамы является малое количество деталей. Рама получается сложной формы и переменной толщины, но состоит всего-навсего из двух деталей. К недостаткам можно отнести:

  • применение саморезов: если их перетянуть, то закрепить саморезы повторно можно только с использованием клея, что исключает разборку;
  • сложность сборки: большое количество деталей, устанавливаемых между половинками рамы, часто не дает собрать конструкцию с первого раза – то одно выскочит, то другое не попадет в нужный паз.

Если, собирая вертолет на такой раме, вы все правильно расположили, вставили, свинтили, и при этом не забыли помазать где надо «локтайтом», у вас ничего не вывалилось и «локтайт» никуда не затек, считайте, что примерно 1/3 работы по сборке вы выполнили. Жесткость пластиковой рамы увеличивают с помощью дополнительных силовых элементов, например таких, как специальная нижняя пластина, которая может быть либо стандартным элементом рамы, либо деталью «апгрейда».

В более серьезных моделях 60 и 90 класса обычно применяется «сборная» рама. Она позволяет обеспечить большую жесткость. Модель с такой рамой проще собирать. Сначала на одной боковой пластине собирается все, что должно находится между боковинами рамы, затем к ней привинчивается вторая боковая пластина. Несмотря на то, что деталей в такой конструкции гораздо больше, процесс сборки лучше контролируем. При этом пластины и накладки могут быть разной толщины или из разного материала. Все это направлено на то, чтобы получить необходимую жесткость при минимальном весе конструкции.

Двигатель, сцепление, редуктор, топливная система, охлаждение

На модели вертолета (не важно, электро или ДВС) двигатель крепится к силовому элементу – мотораме, которая, в свою очередь, жестко крепится к раме вертолета. Все остальные детали, относящиеся к мотоустановке, крепятся непосредственно к раме. Крутящий момент двигателя обычно передается на сцепление через резиновую муфту.

Важнейшим элементом является система охлаждения двигателя, который не может охлаждаться сам, так как не обдувается воздушным потоком от несущего ротора. На вертолетах с ДВС для охлаждения применяют специальную систему, состоящую из крыльчатки и воздуховода, направляющего поток воздуха на головку двигателя. В небольших электровертолетах мотор не нуждается в специальной системе охлаждения, а на более крупных применяют металлические радиаторы и даже принудительное охлаждение, как на ДВС.

Топливная система должна обеспечивать постоянную и бесперебойную подачу топлива на всем протяжении полета. Классическая топливная система модели с калильным ДВС состоит из бака, питающей трубки (по которой топливо из бака попадает в двигатель), и системы создания повышенного давления в баке. Питающая трубка в баке заканчивается грузиком, который перемещается вместе с остатками топлива в баке, обеспечивая, таким образом, бесперебойную подачу топлива при выполнении эволюций. Наддув реализуется с помощью трубки, которая идет от штуцера отбора давления из глушителя в бак. Между баком и карбюратором устанавливают топливный фильтр, который следует время от времени промывать. Чем больше фильтрующая поверхность у фильтра, тем лучше. Иногда имеется третья, заправочная, трубка, через которую производится заправка топлива в бак, после чего она наглухо зажимается. В случае отсутствия такой трубки, заправку производят через трубку подачи топлива, снимая ее с топливного фильтра со стороны бака.

Для электровертолетов большое значение имеет место расположения батарей. Аккумуляторная батарея, как самый тяжелый элемент, располагается как можно ближе к центру тяжести модели и надежно крепится. Даже незначительный сдвиг батареи может привести к непоправимому нарушению центровки вертолета.

Сцепление на модели вертолета – центробежное, состоит из маховика с кулачками, который закрепляется на валу и «колокола». При достижении расчетного количества оборотов, кулачки под действием центробежной силы раздвигаются и сцепляются с «колоколом». Со временем, кулачки могут отвалиться, либо разогнуться настолько, что сцепление становится постоянным. Это зависит от качества применяемых материалов при изготовлении конкретной модели сцепления конкретным производителем. Различные фирмы могут предлагать «апгрейды» - более жесткие, либо более упругие, либо с большим количеством кулачков диски. На электровертолетах сцепление, как правило, отсутствует вовсе.

Далее, крутящий момент передается на редуктор, передаточное число которого подбирается под конкретный тип двигателя. Как правило, серийные двигатели одинакового объема имеют примерно одинаковые рабочие обороты. Если, к примеру, для линейки двигателей объемом 0.30, 0.32, 0.36, 0.39 куб. дюймов применяется один и тот же редуктор, то для использования на той же модели двигателя объемом 0.46 или 0.50 куб. дюймов требуется редуктор с другим передаточным числом.

Редуктор рассчитывается таким образом, чтобы при рабочих оборотах штатно нагруженного двигателя обороты основного ротора лежали в диапазоне 1600-2200 об/мин. Для того, чтобы не морочить себе голову передаточными числами можно просто использовать двигатели, рекомендованные производителем набора. Как ни странно, но в этом случае, вы скорее всего получите наилучший результат! Другой подход – «от противного», заказывайте модель вертолета под определенный двигатель. Например, фирма miniature aircraft специально комплектует наборы под определенный двигатель, например OS Max или Yamada, о чем свидетельствует прямое указание на коробке. Если по какой-либо причине вы ограничены в выборе вертолета или двигателя, то лучшим решением будет посоветоваться со специалистом.

Еще совет. Если вы новичок, используйте то же самое, что другие моделисты, с которыми вы общаетесь. В случае возникновения проблем, очень велика вероятность, что найдется моделист, использующий такой же двигатель, он и подскажет, как и что крутить. Старайтесь всегда использовать «проверенные» сочетания, это поможет избежать основных проблем настройки.

Ротор и автомат перекоса

Модели вертолетов, как правило, проектируются по схеме с одним несущим ротором и рулевым винтом. Она наиболее проста для реализации на модели и отработана настолько, что все остальные схемы отошли на второй план. Модели соосных схем существуют, но это, скорее, экзотика или игрушки, и их летные характеристики оставляют желать лучшего.

Между двигателем и несущем ротором устанавливается обгонная муфта. Она предназначена для того, чтобы ротор мог продолжать свободно вращаться по инерции после остановки двигателя. Благодаря этому устройству становится возможным выполнять один из сложнейших элементов пилотажа – авторотацию. На электрических микровертолетах обгонная муфта применяется редко, не столько потому, что электромотор легко вращается, сколько потому, что из-за своих размеров и небольшой массы ротора данные модели вообще неспособны авторотировать. Большие электровертолеты так же как и ДВС оснащены обгонной муфтой.

Ротор, как правило, двухлопастный. На моделях-копиях применяют многолопастные роторы, но отнюдь не с целью улучшения летных характеристик, а с целью повышения копийности. Наилучшим образом себя зарекомендовала схема с управляющими лопатками. Не объясняя принцип работы серволопаток (так как данное описание далеко выходит за рамки статьи), отметим лишь, что назначение у них двойное: стабилизация – "механический гироскоп", и усилитель, который позволяет использовать менее мощные сервомашинки.

В моделях применяется несколько схем управления автоматом перекоса. «Классической» является схема, при которой одна машинка управляет наклоном чашки автомата перекоса вперед-назад, то есть тангажем, вторая машинка управляет наклоном чашки из стороны в сторону, то есть креном, и третья машинка управляет общим шагом – поднимает и опускает чашку. Этот вариант поддерживается всеми без исключения вертолетными передатчиками. Казалось бы: крен, тангаж, шаг – все просто. Но эта простота оборачивается сложностью механической конструкции смесителя общего шага.

Предположим, мы задали наклон тарелки автомата перекоса 10 градусов и при этом работаем общим шагом. Так вот, плечи рычагов, длины тяг и их конфигурация должна быть подобрана таким образом, чтобы на всем ходу общего шага наклон тарелки оставался равным 10 градусам. При этом данное условие должно соблюдаться для управления креном и тангажом одновременно. Не всегда это удается. Есть более удачные схемы управления автоматом перекоса и менее удачные.

В качестве альтернативы предлагается электронный смеситель. При этом машинки подключаются непосредственно (или через промежуточную качалку) к чашке. Передатчик пересчитывает сигналы с ручек крена, тангажа и общего шага в смещения машинок по определенным формулам. Со стороны это выгладит так: при работе креном и тангажем машинки работают в противофазе, наклоняя тарелку, при работе общим шагом – вместе, поднимая и опуская тарелку.

Всего насчитывают четыре вида электронных микшеров автомата перекоса:

  1. Три машинки. Две по поперечной оси модели друг напротив друга, третья точно спереди или сзади по продольной оси.
  2. Четыре машинки, установленные через каждые 90°. Первая и третья машинки расположены по продольной оси модели, вторая и четвертая по поперечной.
  3. Три машинки, установленные через каждые 120°. Одна машинка расположена точно спереди или сзади по продольной оси модели.
  4. Три машинки, установленные через каждые 120°. Одна машинка расположена точно слева или справа по поперечной оси модели.

Наиболее распространенным является третий вид. Если в вертолете используется подобная схема, то важно, чтобы все машинки были одинаковыми. Иначе более медленная или слабая машинка не будет успевать за остальными, что негативно скажется на управлении. Идеальным вариантом будет покупка трех (четырех) одинаковых машинок, специально предназначенных для управления автоматом перекоса.

Преимущества обычной схемы управления:

  • не требуется специальный микшер в передатчике;
  • можно использовать разные машинки - более быстрые для управления креном и тангажом и более мощную но медленную на общий шаг - это дешевле, чем три (четыре) быстрые и мощные машинки, а эффект сравнимый;
  • простая настройка электроники.

Недостатками являются:

  • сложность конструкции механического микшера - обилие тяг и их соединений, возможность образования люфтов;
  • требуется точная настройка механики, строго по инструкции;
  • не всегда удачная конструкция самого механического микшера.

Рассмотрим преимущества и недостатки электронного управления автоматом перекоса. К преимуществам можно отнести:

  • высокую точность управления;
  • простоту конструкции.

К недостаткам относятся:

  • определенный тип чашки должен поддерживаться вашим передатчиком; существуют, правда, и бортовые микшеры ccpm;
  • необходимы одинаковые сервомашинки, желательно и быстрые и мощные;
  • необходима более сложная, по сравнению со стандартным автоматом перекоса, процедура настройки микшера и механики.

Хвостовая балка, и хвостовой ротор

Хвостовая балка обычно представляет собой трубу. Она может быть изготовлена из алюминия, стекло- или углепластика. Чем легче и жестче, тем лучше. Балка имеет определенную, свойственную конкретной модели, длину и диаметр. Это может быть просто отрезок трубы, либо на балке могут быть пазы или выступы для облегчения сборки и точного позиционирования редуктора и стабилизатора.

Внутри балки находится ременная передача или вал. С помощью этой передачи крутящий момент от двигателя через редуктор передается на хвостовой ротор. Хвостовой ротор может быть жестко связан либо с двигателем, либо с главным ротором. Все зависит от того, подключен хвостовой ротор до обгонной муфты, или после. Если хвостовой ротор жестко связан с главным ротором, то это означает, что вертолет продолжает управляться по курсу во время выполнения авторотации. С одной стороны, это облегчает управление на авторотации, с другой – энергия основного ротора тратится быстрее. Если у базовой модели хвост при выполнении авторотации не управляется, то не стоит заранее расстраиваться, возможно, для этой модели имеется «апгрейд», обеспечивающий нужную функциональность. В любом случае, авторотировать можно и без «управляемного» хвоста.

Спор о том, что лучше: ремень или вал, в некотором смысле, риторический. И у того и другого типа передачи есть преимущества и недостатки.

Преимущества вала:

  • малая потеря энергии при авторотации.

Недостатки вала:

  • небольшое искривление вала или балки вызывает сильную вибрацию, требуется замена вала и балки;
  • недопустимо наличие вмятин и других повреждений балки;
  • требуется высокая точность изготовления конических передач и соединений вала во избежание образования люфтов, износа и вибрации;
  • шумность.

Преимущества ремня:

  • работает при гнутой и мятой балке, лишь бы не сильно терся;
  • отсутствие люфтов;
  • тишина.

Недостатки ремня:

  • большая потеря энергии, по сравнению с валом;
  • ремень необходимо подтягивать, так как он со временем ослабевает.

Ремень, в сущности, не так уж плох, особенно для начинающих. Вмятин на алюминиевой балке от лопастей не избежать. При нормальной эксплуатации ремень не перетрется! Стопроцентно можно утверждать, что ремень переживет вертолет, если он не поврежден при аварии или неправильном обращении, если он не трется о вмятины и рваные края дыр в балке, сам о себя и не перекручен внутри нее. Не так уж много условий.

Управление тягой хвостового ротора осуществляется, как правило, с помощью изменения его шага. Тяга управления шагом обычно проходит снаружи балки.

Машинка управления шагом хвостового ротора может располагаться на раме вертолета. В этом случае применяется длинная тяга, возможно, проходящая через одну или несколько промежуточных качалок. Такое расположение не является лучшим, так как длинные или изогнутые тяги «играют» а в промежуточных качалках могут появляться люфты. Более удачным признают расположение машинки непосредственно на хвостовой балке на специальном кронштейне у ее корня. В этом случае, тяга прямая, без промежуточных соединений.

Расположение машинки на балке может быть стандартным для конкретной модели, или кронштейн-держатель машинки может быть деталью «апгрейда». Чем меньше люфты в системе управления шагом хвостового винта, легче управление. Чем быстрее и точнее машинка, тем лучше производится удержание курса гироскопом и точнее фиксация хвоста при выполнении фигур пилотажа.

В игрушках и на микровертолетах часто применяется прямой привод хвостового ротора отдельным маленьким электромотором. При этом управление шагом хвостового ротора не используется, а вместо этого меняются его обороты. Это менее эффективно, но зато просто и дешево, что и требуется для игрушки.

Шасси

Вертолет должен устойчиво стоять на шасси, даже на небольших неровностях грунта, так как опрокидывание на взлете или при посадке приводит к серьезным поломкам. Кроме того, шасси должно смягчать удары при жестких приземлениях и авариях, предохраняя другие узлы вертолета. Шасси вертолета бывает стандартное и «тренировочное»:

Стандартное шасси

Стандартное вертолетное шасси, как правило, представляют собой две лыжи из дюралевых трубок и две изогнутые пластиковые поперечины, которые служат в качестве амортизаторов. От качества этих пластиковых амортизаторов зависит, будут подламываться стойки на жесткой посадке или нет. В случае если шасси у модели имеет неудачную конструкцию или хрупкие пластиковые части, можно применить подходящее шасси от другой модели вертолета, более мощное и «дубовое». Дело в том, что если модель при жесткой посадке подломит стойку и опрокинется, то, скорее всего, потребуются новые лопасти, возможно, вал и другие детали. А если модель устоит, то, вероятно, можно будет обойтись заменой балки и выпрямлением тяг. Шасси реально защищает модель при авариях и жестких посадках, даже ценой собственной целостности.

На моделях-копиях применяют «настоящее», копийное шасси, часто с пневмоуборкой, такое же, как на оригинале, только в миниатюре.

Тренировочное шасси

Отдельного описания заслуживает так называемое тренировочное шасси. Оно предназначено для начального обучения и служит двум целям: препятствует опрокидыванию модели на взлете и посадке, и помогает новичку ориентироваться в положении модели в пространстве. Тренировочное шасси можно купить в магазине, либо изготовить самому из подручных материалов.

Покупное тренировочное шасси, представляет собой крестовину из легких карбоновых трубок с яркими шариками на концах. Крестовина крепится к лыжам с помощью резинок. Яркие шарики помогают ориентироваться, но не стоит обращать внимание только на них, рано или поздно тренировочное шасси придется снять. На жестких посадках трубочки периодически отламываются в местах крепления. Укороченную трубку просто вставляем обратно, не обращая внимания на то, что она стала короче остальных; в другой раз сломается другая трубка. Как только трубки укоротятся до такой степени, что шарики почти вплотную прижмутся к лыжам, тренировочное шасси можно смело снимать. Возможно, это случится раньше, но в любом случае, тренировочное шасси для новичка необходимо.

Можно изготовить тренировочное шасси самостоятельно. Конструкции могут быть самыми разными. Интересным является вариант с использованием детского обруча - холохупа. Под лыжи подкладываются две легкие трубки и закрепляются с помощью изоленты. Вертолет устанавливается на холохуп и в местах пересечения трубок с холохупом конструкция так же скрепляется изолентой. Дешево и сердито.

Капот

Капот выполняет не только декоративную функцию. При аварии он сминается и поглощает большое количество энергии удара, предохраняя другие узлы. Капот должен быть легкий. Обычно капоты изготавливаются из пластика, но встречаются так же выклеенные из стеклоткани или угля, а для микровертолетов – лексановые.

Другое предназначение капота – помощь в ориентации. По этой причине к покраске капота стоит отнестись очень серьезно. Дело не столько в том, как будет выглядеть готовая модель, сколько в том, насколько хорошо она будет различима в небе. Окраска не должна сливаться с небом, должно быть хорошо видно, где верх, где низ модели. По возможности – где левая и правая сторона. Чем ярче и контрастнее, тем лучше. В инструкции, как правило, предлагается один или несколько вариантов окраски капотов, а так же цветные самоклеящиеся декали.

Электроника

Без должной электронной «начинки» вертолет не полетит. Тем не менее, одну и ту же модель можно снарядить по-разному. Стоимость бортовой электроники может при этом сильно отличаться. Попробуем разобраться, как собрать «сердитый» аппарат, истратив разумное количество денежных средств.

Основное оборудование

Основное оборудование - это то, без чего вертолет не полетит. Современная модель вертолета не летает без: приемника, гироскопа, сервомашинок и бортового аккумулятора. Подумав немного, добавим к списку надежный выключатель и индикатор заряда борта – безопасность дороже.

Электровертолету необходим регулятор оборотов. В этом случае вместо бортовой батареи применяется более мощная силовая. Питание приемника, сервомашинок и гироскопа при этом осуществляется через регулятор.

Приемник

Для управления простым вертолетом с фиксированным шагом достаточно обычного четырехканального приемника. Для полноценной модели вертолета, в принципе, годится любой шестиканальный приемник. При этом будут задействованы все жизненно необходимые функции вертолета: элерон, руль высоты, газ, курс, чувствительность гироскопа, общий шаг. Кроме перечисленного, на пилотажный вертолет может быть установлено: игла для регулирования смеси и гувернер, для управления которым требуется два канала. Итого в сумме девять.

Помимо прочего, на модели-копии устанавливают: убирающиеся шасси, огни и другие «копийные» элементы, управляемые с земли. Количество задействованных каналов ограничивается лишь возможностями конкретной модели аппаратуры и пилота, который всем этим управляет.

Кроме достаточного количества каналов, очень желательно, чтобы приемник был цифровым (PCM) или «умным» (IPD, APD). Это требование связано с тем, что данные приемники при наличии помех лишь замедляют управление, вертолет становится «ватным», медленно реагирует на команды, в то время как вертолет с обычным PPM-приемником начинает дергаться и «колбаситься». Видя, что вертолет дергается, пилот может растеряться или неправильно трактовать поведение вертолета, что, в свою очередь, приводит к очень плачевным последствиям. Можно настоятельно рекомендовать устанавливать PCM-приемники на любые вертолеты с диаметром ротора более 50 см. В этом мнении сходится абсолютное большинство моделистов-вертолетчиков.

Сервомашинки

Прежде всего, сервомашинки должны подходить по размеру и устанавливаться на предусмотренные для них места. Уточните необходимый размер, сверившись с инструкцией по сборке. Практически на все вертолеты с диаметром ротора от метра устанавливаются сервомашинки стандартного размера. Для микровертолетов необходимы микро сервы.

Сервомашинки отличаются не только по размеру, но и по скорости, усилию и прочим характеристикам. Они бывают «цифровые» и «стандартные». Обо всем этом подробно написано в . Мы же разберемся, куда устанавливаются те или иные машинки.

Обычный вертолет 30 класса полетит на самых дешевых, стандартных сервах. При этом он сможет выполнять практически все, на что он способен в стандартной комплектации. Улучшить его характеристики за счет установки хороших и дорогих серв можно, и это улучшение будет заметно. Но для того, чтобы он стал летать кардинально лучше, заменой одних машинок не обойтись. Для новичка, который будет на первых порах лишь выполнять висение, стандартной комплектации будет вполне достаточно. Исключение составляет лишь серва управления шагом хвостового ротора. Если вы покупаете гироскоп, то лучше всего покупать его в комплекте с сервомашинкой. Если же такого комплекта нет, то предпочтение при выборе нужно отдавать наиболее быстрой машинке, желательно цифровой.

Для вертолета 60 класса и крупнее необходимы мощные и быстрые дорогие машинки. Теоретически, он полетит и со стандартными сервами, но это то же самое, что купить спортивный автомобиль и заливать в него самый дешевый некачественный 76-ой бензин, ссылаясь на то, что, дескать, дорого и много жрет. Хорошо летать такой вертолет не будет, и даже в умелых руках модель не покажет все, на что она способна.

Нужно всегда искать разумный компромисс между ценой и качеством. Наиболее разумным видится следующий вариант. Для вертолета 30 класса со стандартным управлением автоматом перекоса:

  • элероны и руль высоты: две одинаковые быстрые машинки, усилие от 3 кг/см и более;
  • общий шаг: мощная сервомашинка с усилием не менее 6 кг/см;
  • хвостовой ротор: быстрая машинка, лучше цифровая, скоростью не более 0.12 сек на 60°; обратите внимание, что некоторые производители указывают скорость из расчета 45°.

Для вертолета 30 класса с системой электронного смесителя (CCPM 120°):

  • три машинки управления чашкой автомата перекоса: абсолютно одинаковые машинки, с усилием от 4 кг/см и более, если при этом они будут иметь скорость перекладки менее 0.15 cек на 60°, тем лучше; рекомендуется купить три новые одинаковые сервомашинки;
  • газ: стандартная серва, лучше на подшипниках (ballbearing), но можно обойтись и той, что поставлялась в комплекте с аппаратурой;
  • хвостовой ротор: быстрая машинка, лучше цифровая, скоростью не более 0.12 сек на 60°.

Все это лишь общие пожелания, которые носят рекомендательный характер. Какие именно сервомашинки устанавливать на вертолет, какого производителя выбрать - каждый решает самостоятельно. Помните про совместимость: лучше всего совместимы между собой компоненты одного производителя.

Гироскоп

Выбор гироскопов для вертолетов очень велик. Фирмы предлагают целые линейки гироскопов для любых моделей, начиная от простейших микро и заканчивая мощными бортовыми контроллерами с множеством функций.

Гироскопы для моделей бывают обычные (conventional) и интегральные (headinghold или avcs и так далее). Разница заключается в том, что обычный гироскоп просто мешает любому самопроизвольному изменению курса вертолета, а интегральный – удерживает курс вертолета постоянным. Лучше всего это видно в полете. Если при выполнении маневров с обычным гироскопом модель стремится развернуться по направлению своего движения, то с интегральным – вертолет будет сохранять ориентацию по курсу вне зависимости от направления полета.

Что это дает? При выполнении многих фигур необходимо четко удерживать хвост в определенном положении. При этом, используя обычный гироскоп, необходимо все время удерживать хвост, что часто является просто непосильной задачей. С интегральным гироскопом такой проблемы нет. Вместо этого, новички сталкиваются с другой «проблемой»: вертолет не разворачивается сам. Необходимо «рулить» хвостом, разворачивая вертолет в нужном направлении, чтобы он «летел как настоящий», а не боком. Вероятно, лучше покупать сразу интегральный гироскоп и учиться. С ним модель более управляема, ее не развернет ветром. Тем более, такой гироскоп всегда при желании можно переключить в «обычный» режим.

Следует так же обращать внимание на вес. Это очевидно. Вряд ли кому-то придет в голову ставить тяжелый гироскоп на микровертолет, он попросту не взлетит!

Подробнее о моделях и конструкциях гироскопов читайте в других статьях и обзорах.

Регулятор оборотов

Регуляторы оборотов применяются на электровертолетах. О типах регуляторов и принципах их действия есть отлельные статьи, мы же остановимся на особенностях вертолетных регуляторов. Для них характерны функции медленного старта, плавной отсечки и гувернера.

«Медленный старт» означает, что ротор будет раскручиваться плавно. Резкое раскручивание ротора может привести к складыванию лопастей, сильной вибрации на старте и, как результат, заваливанию модели на бок.

При разряде батареи до определенного уровня, близкого к критическому, регулятор отключает ходовой двигатель, сохраняя (поддерживая) питание приемника и серв. Это называется «отсечкой». На модели вертолета резкий останов мотора может привести к очень плачевным последствиям, особенно на микровертолетах, не оборудованных обгонной муфтой. Так же, практически все микровертолеты не способны авторотировать из-за их малых размеров. Ситуацию исправляет функция «плавной отсечки». Обороты ротора при отсечке уменьшаются плавно, давая возможность приземлиться.

Гувернер – функция поддержания постоянных оборотов ротора вне зависимости от нагрузки на ротор. Использование этой функции избавляет от кропотливой настройки кривых шаг-газ, так как поддержание постоянства оборотов контролируется электроникой регулятора. Эта функция, как правило, доступна в контроллерах бесколлекторных двигателей, предназначенных для моделей вертолетов, так как конструкция регулятора позволяет измерять обороты без применения каких-либо дополнительных датчиков и устройств.

Батарея и индикатор заряда

На модель вертолета с ДВС устанавливается обычная 4-х или 5-ти баночная никель-кадмиевая батарея. Этот тип батареи позволяет подключать необходимое количество сервомашинок, а так же при пиковой нагрузке отдавать достаточные токи. 4-х баночная батарея предпочтительнее, так как большая часть электрооборудования рассчитана на напряжение 4.8 вольта; так же на это напряжение рассчитано срабатывание функции battery failsafe у большинства PCM-приемников. При разряде батареи до порога срабатывания функции battery failsafe равного, обычно, 3.8 вольтам, кривая разряда у 5-ти баночной батареи настолько крута, что сервомашинка дросселя просто не успевает передвинуться в запрограммированное положение до момента полного отключения. Будьте ПРЕДЕЛЬНО внимательны!

Что же касается электровертолетов, то в них питание бортового оборудования обычно производится от ходовой батареи через BEC (стабилизатор напряжения) регулятора. Необходимо лишь учитывать возможности регулятора: суммарное потребление электронного оборудования не должно превышать возможности выхода BEC. На крупных электрических вертолетах иногда устанавливают бортовую батарею, аналогично вертолетам с ДВС, так как суммарная пиковая нагрузка цифровых серв в полете может достигать нескольких ампер!

В настоящее время наблюдается тенденция к использованию литий-полимерных аккумуляторов в качестве бортовой батареи. Прежде всего, из-за их большой емкости и малого веса.

Так как напряжение литий-полимерной батареи сильно отличается от стандартных NiCD и NiMH бортовых батарей, то в этом случае применяют специальные регуляторы. При этом необходимо помнить о том, что обычный индикатор заряда, подключенный к свободному выходу приемника, в этой конфигурации не будет показывать уровень заряда батареи. Для слежения за ним необходимо применять специальные устройства.

Пожелания к индикатору заряда очень просты. Индикатор должен быть ярким, его должно быть хорошо видно на расстоянии (при висении). Он должен быть рассчитан на используемое бортовое напряжение. Проще говоря, если ваша NiCD батарея имеет 4 банки, то вам необходим индикатор на 4.8 вольта, если 5 банок – то на 6 вольт.

На электровертолете индикатор не требуется, так как регулятор подает на приемник всегда одинаковое напряжение. Вместо этого в регуляторе может быть встроена сигнализация падения напряжения и/или отсечка.

Дополнительное оборудование

В этом разделе мы поговорим о различных электронных «фишках». Что еще из «модельного» электронного оборудования устанавливается на вертолет? Фотоаппараты, GPS и прочая экзотика не в счет. Наиболее популярными «фишками» являются: гувернер для моделей с ДВС и оптический «автопилот».

Гувернер

В полете, особенно при выполнении фигур пилотажа, нагрузка на ротор вертолета постоянно меняется. Однако, для исполнения большинства фигур комфортнее, когда ротор сохраняет постоянные обороты. Это связано с тем, что при изменении оборотов меняется реакция на ручку шаг-газ. Например, не очень удачная настройка кривых шаг-газ может приводить к тому, что при висении ротор начнет «раскручиваться», из-за чего, в свою очередь, незначительное отклонение ручки шаг-газ приводит к очень резкой реакции модели. После этого ротор нагружается, обороты резко падают и реакция на ручку опять притупляется до следующей раскрутки.

Гувернер предназначен для поддержания заданных оборотов основного ротора, вне зависимости текущего значения шага. С помощью датчика прибор измеряет обороты двигателя, далее, исходя из них, вычисляет обороты основного ротора и управляет дроссельной заслонкой таким образом, чтобы обороты оставались неизменными. Моделисту необходимо лишь правильно настроить кривую шага. Кривая газа при использовании гувернера имеет форму прямой.

Какие еще преимущества дает гувернер? В общем, с гувернером настраивать вертолет проще. Возможно, используя гувернер с самого начала, вы так и не овладеете досконально искусством взаимной настройки кривых шага, газа и карбюратора двигателя. Ведь для того чтобы правильно настроить все это, нужно уметь неплохо летать, а для того, чтобы научиться летать, необходим более-менее сносно настроенный вертолет. Используя гувернер, вы, применив минимум усилий, получите хорошо настроенную модель и можете сосредоточиться на отработке фигур пилотажа

Автопилот

Автопилот – устройство, позволяющее стабилизировать модель в полете. Для стабилизации модели по курсу, как известно, применяется гироскоп. Для того чтобы стабилизировать модель по крену и тангажу существует другое устройство – оптический автопилот. Он действует следующим образом: специальные датчики отслеживают положение линии горизонта, при возврате ручек в нейтраль автопилот вычисляет поправку, необходимую для возврата модели в горизонтальное положение, в результате чего модель стабилизируется.

Данное устройство не получило широкого распространения у моделистов по нескольким причинам. Во-первых, существуют ограничения по использованию прибора: он работает только на улице, при чем в тех местах, где четко просматривается горизонт. Во-вторых, он вырабатывает у пилота неправильную реакцию на непонятное поведение модели: чуть что – бросать ручки, автопилот вырулит. На начальном этапе это помогает, но далее – только вредит. И в третьих, это считается «неспортивным». Управление моделью вертолета привлекает, в том числе, своей сложностью; тем дольше это не надоедает, всегда есть чему учиться.

Комплектация моделей

Вертолеты могут продаваться в различной комплектации, начиная от готовых к полету комплектов, и заканчивая набором деталей для сборки. Чем меньше подготовлен и уверен в себе новичок, тем более собранную и готовую к полетам модель следует покупать. Это не означает, что не уверенный в своих силах новичок ограничен в выборе лишь готовыми моделями и игрушками, так как сборку и настройку любой модели, даже самой сложной, можно заказать в магазине.

  • Игрушки и RTF . Заряжай, заправляй и лети. Так как такая модель продается в собранном и настроенном виде, с передатчиком и всем необходимым оборудованием, то, как правило, все комплектующие максимально удешевлены. Иначе комплект получится слишком дорогим для новичка, и при этом неподходящим для профи. Проще говоря – невостребованным. Подавляющее большинство RTF моделей вертолетов – игрушки, летные характеристики у этих моделей – соответствующие.
  • ARF . Необходима аппаратура и настройка. Как правило, ARF модель – это собранная и частично настроенная механика вертолета с установленным двигателем. Однако комплектация может существенно отличаться. Правило для ARF лишь одно – для подготовки к полетам этой «почти готовой модели» у средне подготовленного моделиста уйдет от 8 до 24 часов. Дополнительно потребуется аппаратура и электроника, бортовой аккумулятор, простейший инструмент для установки недостающего оборудования и, возможно, инструменты для окончательной настройки.
  • KIT – это коробка с деталями «россыпью», которые упакованы в пакетики и снабжены инструкцией для сборки. Некоторые сложные узлы, особенно, требующие специального инструмента и настройки, могут быть собраны заранее. Иногда в комплекте поставляется двигатель, а в случае электрической модели, почти всегда – коллекторный мотор. Кроме того, для завершения постройки необходима аппаратура, инструменты для сборки, настройки, расходные материалы и так далее. Все это должно быть перечислено в инструкции по сборке. В среднем, сборка может занять от двух недель и дольше, впрочем, это сугубо индивидуально.

Определитесь, что вам интереснее: летать или строить. Трезво оцените, располагаете ли вы достаточным количеством свободного времени. Хотя «выпиливать» и «точить» не придется, тем не менее, сборка модели вертолета имеет множество нюансов, которые могут стать причиной разрушения модели в воздухе, или могут привести к еще более плачевным последствиям – инвалидности и даже смерти. Спешить не стоит, как бы вам не хотелось быстрее поднять вертолет в воздух. Всегда помните: модель вертолета – НЕ ИГРУШКА!

Еще один важный момент – распространенность модели и доступность запчастей. Предположим, вы выбрали отличную эксклюзивную модель с выдающимися летными характеристиками. Ждали ее приезда месяц, дождались, полетали и… разбили. Запчасти стоят дорого и приедут, при удачном стечении обстоятельств, через месяц. И их нигде нет. А сезон – короток. Иметь прекрасную эксклюзивную модель, но не летать на ней из-за постоянного отсутствия запчастей - удовольствие сомнительное. Подумайте, где и как вы будете приобретать запчасти, во что это примерно обойдется. Найдите единомышленников и пользователей такой же модели: вместе – веселей.

Немного о сборке

Собирать вертолет самому очень увлекательно. Не стоит спешить: при этом велик риск неправильной сборки или порчи деталей, а это, в свою очередь, может повлечь разрушение модели в полете или потерю управления с самыми плачевными последствиями. Ни в коем случае не пытайтесь ничего «улучшить» или «исправить», тем более при сборке первой модели. Если вы в чем-то не уверены, лучше уточнить в магазине либо у моделистов, ранее собиравших данную модель вертолета. Ведущие производители стараются дать максимально полную информацию по сборке модели и никогда не экономят на безопасности. Ключевые узлы либо принципиально нельзя собрать неправильно, либо поставляются в собранном виде. Не разбирайте их, в этом нет необходимости.

Есть два подхода при составлении производителем инструкции по сборке. Японцы, например, стараются рисовать своеобразные «комиксы» по сборке модели вертолета. Во всей инструкции вряд ли наберется полстраницы текста, если не считать многочисленных предупреждений и правил касающихся эксплуатации. При этом картинки поймет практически любой, а крупные надписи «варнинг» и «ахтунг», снабженные картинкой, укажут моменты, на которые следует обратить особое внимание.

Американцы и европейцы предлагают пользователю объемистую инструкцию, в которой имеются лишь ключевые иллюстрации, без которых никак нельзя обойтись. Все остальное объясняется на словах, при чем, как правило, на английском языке. Поинтересуйтесь у продавца, попросите дать пролистать инструкцию по сборке вертолета перед покупкой.

Нельзя однозначно сказать, что лучше. В инструкции по сборке вертолета x-cell объясняются такие тонкие моменты, которые не покажешь никакими картинками, но способен ли будет отечественный пользователь прочитать и понять то, что написано – это вопрос.

Основные правила сборки таковы:

  • Четко следуйте инструкции. Прочтите ее целиком от начала до конца ПЕРЕД началом сборки.
  • Используйте правильный инструмент и расходные материалы. Не стоит заменять шестигранный ключ плоской отверткой, а весь прочий необходимый инструмент – плоскогубцами.
  • Все резьбовые соединения, особенно металл-металл, собирайте на фиксаторе резьбы – «локтайте».
  • Не стесняйтесь лишний раз спрашивать у знающих людей.

Заключение

Вертолеты – это сложно и интересно. Эти модели непросто собирать и настраивать, они более требовательны к качеству сборки чем, например, самолеты. Пилотировать их – настоящее искусство. Полет вертолета завораживает, а выполнение сложных элементов 3D пилотажа у самой земли вызывает восторг у зрителей. Именно это сочетание сложности и одновременно зрелищности и красоты и привлекает моделистов. Вертолеты – для тех, кто не любит отступать.

В наши дни вертолет является наиболее универсальным летательным аппаратом. Во многих странах он носит название «геликоптер », которое было образовано из двух греческих слов, в переводе означающих «спираль» и «крыло». Вертолет, подолгу зависая на одном месте, может затем полететь в любое направление, даже не совершая разворота. А ещё ему не нужны специальные взлетно-посадочные полосы, ведь он способен взлетать вертикально вверх без «разбега» и совершать вертикальную посадку без «пробега». Благодаря этому вертолеты широко применяются для транспортных перевозок в труднодоступные места, для пожарных, санитарных и спасательных работ.

Основным отличием вертолёта от самолёта является то, что он взлетает без разгона и поднимается ввысь в вертикальном положении. У вертолёта нет крыльев, вместо них имеются большой винт, расположенный на крыше, и маленький винт на хвосте. Главное достоинство вертолёта – манёвренность. Он может подолгу зависать в воздухе и, кроме того, летать задним ходом. Чтобы совершить посадку, вертолёту не требуется аэродром: он может приземлиться на любой ровной площадке, даже высоко в горах.

В начале двадцатого столетия француз П. Корню первый в мире поднялся на вертолёте. Ему удалось взлететь на высоту 150 сантиметров, то есть он висел в своём изобретении где-то на уровне груди взрослого мужчины. Тогда этот полёт продолжался всего 20 секунд. Поль Корню решил, что высота слишком большая, и он сильно рискует, поэтому в последующем взмывал вверх только со страховкой – на привязи.

Главным элементом конструкции, который заставляет вертолёт взлетать, а затем парить в небесах, является его большой винт. Он постоянно загребает лопастями воздух, за счёт чего вертолёт и летит. В тоже время хвостовой винт не даёт корпусу этой летающей птицы поворачиваться в противоположное направление вращения основного винта. Такая конструкция вертолёта была придумана в 1940-х годах русским инженером.

При вращении несущего винта вертолета возникает сила реакции, раскручивающая его в противоположном направлении. В зависимости от способа уравновешивания этой силы бывают одновинтовые и двухвинтовые вертолеты. У одновинтовых вертолетов силу реакции устраняют вспомогательным хвостовым винтом, а у двухвинтовых – за счет того, что винты вращаются в противоположные стороны.


Виды вертолетов .

Главным предназначением ударных вертолётов является поражение наземных целей противника. Это лучшие военные вертолёты, поэтому такие машины ещё называют штурмовыми. Их вооружение состоит из управляемых противотанковых и авиационных ракет, крупнокалиберных пулемётов и малокалиберных орудий.


Ударный вертолёт может в одном бою уничтожить огромное количество техники и живой силы противника. Ударный вертолёт «Еврокоптер тайгер» состоит на вооружении в армиях Франции, Испании, Германии и Австралии.

Одним из самых манёвренных ударных вертолётов в мире считается российский вертолет Ка-50. Он широко известен в мире под прозвищем Черная акула. Этот вертолёт оснащён двумя большими винтами, а хвостовое оперение у него как у самолёта. Вертолет Черная акула выполняет самые сложные фигуры высшего пилотажа и способна зависать в воздухе до 12 часов. Благодаря современной автоматизации Ка-50 управляет только один пилот.


В 1983 году в американском штате Аризона был создан ударный вертолёт АН-64 «Апач». В его вооружение вошли автоматическая скорострельная пушка и 16 управляемых противотанковых ракет. Вертолет «Апач» способен развивать скорость до трехсот км в час и летать на высоте 6 километров. Этот вертолёт превосходно маневрирует как в кромешной тьме, так и во время самых скверных погодных условий. Вертолет Апач, и в наши дни является основным вертолётом армии в США.


Транспортный вертолет может быть использован для перевозки, как пассажиров, так и грузов. Также из разновидностей вертолетов можно выделить специальный спасательный вертолет и легкий двухместный исследовательский вертолет.


.

Несущий винт у вертолета: используется для полета один или несколько (чаще два) несущих винтов. Его лопасти (до 8 штук) действуют как крылья самолета и при вращении создают необходимую подъемную силу. Вначале лопасти изготавливали из металла, а с конца пятидесятых годов прошлого столетия их делают из стеклопластика.

Вспомогательный винт служит для устранения силы реакции, раскручивающей вертолет в противоположном направлении при вращении несущего винта. Иногда вместо винта на хвостовой балке может быть установлено реактивное сопло. Двигатель вертолета приводит во вращение несущие и вспомогательные винты. Обычно это поршневой или реактивный мотор.


В кабине пилотов находится руль управления (штурвал), поворачиваемый пилотом для полета в нужном ему направлении. Руль изменяет наклон лопастей винта, в полете одна часть круга, который описывает винт, будет опущена ниже, чем другая, и вертолет полетит в эту сторону.

Фюзеляж включает в себя кабину пилота, пассажирский или грузовой салон, а также моторный отсек. Шасси – так как вертолету для взлета и посадки «пробежка» не нужна, очень часто колесное шасси заменяют более удобными лыжами.

Вертолеты летают, потому что у них крутятся длинные лопасти несущего винта, чьи поперечные сечения по форме похожи на сечение самолетных крыльев. Подъемная сила вертолетных лопастей может меняться, если изменять угол наклона всех лопастей одновременно.

А различные повороты машины выполняются при помощи изменения наклона отдельно каждой лопасти при ее вращении. Если надо лететь вперед или назад, поворачивать налево или направо, вращающийся несущий винт поворачивают в направлении желаемого маневра.

В хвостовой части вертолета установлен еще один, небольшой вспомогательный несущий винт. Он нужен для того, чтобы, вращаясь, уравновешивать такое действие главного винта, которое могло бы привести к закручиванию всего вертолета вокруг его вертикальной оси. Другими словами, вспомогательный винт позволяет машине стабильно держаться в воздухе. Кроме всего прочего, вертолеты могут неподвижно зависать в воздухе. Для<» этого требуется, чтобы вес машины оказался равен подъемной силе, создаваемой несущим винтом.

Главный несущий винт

В поперечном сечении лопасть главного несущего винта похожа на крыло самолета. Воздушный поток, обтекая верхнюю и нижнюю поверхность лопасти, создает над ней пониженное давление и рождает подъемную силу.

Вспомогательный несущий винт

Сила, возникающая при вращении главного винта, стала бы раскручивать весь вертолет, если бы не было стабилизирующего эффекта от работы вспомогательного винта, расположенного на хвосте.

Втулка главного несущего винта

Чтобы вертолет был стабилен в полете, пилот устанавливает нужный угол лопастей главного винта. Для этого служит устройство, известное как кольцо автомата перекоса. Оно укреплено на валу несущего винта. Вертолет может лететь, кружить или неподвижно парить в воздухе в соответствии с тем, как пилот установит это кольцо. Ниже на рисунке показаны перемещения кольца вверх и вниз, которые приводят к изменению наклона лопасти винта. Кроме того, кольцо автомата перекоса можно наклонять, чтобы изменить угол наклона винтового диска.

Пилотирование вертолета

1. Чтобы лететь вперед, пилот толкает рычаг управления от себя. При этом винтовой диск наклоняется к носу.

2. Чтобы набирать высоту, пилот увеличивает общий тангаж всех лопастей, пока подъемная сила не превзойдет силу тяжести.

3. Чтобы висеть неподвижно, пилот удерживает такой угол наклона винта, чтобы подъемная сила и сила тяжести были равны.

4. Чтобы дать задний ход, пилот наклоняет винтовой диск по направлению к хвосту.

5. Чтобы повернуть, пилот поворачивает винтовой диск влево или вправо.

6. Чтобы изменить курс, пилот устанавливает нижний угол наклона лопастей вспомогательного винта.

ОБЩАЯ ХАРАКТЕРИСТИКА ВЕРТОЛЕТА Ми-8Т

1. ОБЩИЕ СВЕДЕНИЯ О ВЕРТОЛЕТЕ

Вертолет Ми-8 предназначен для перевозки различных грузов внутри грузовой кабины и на внешней подвеске, почты, пассажиров, а также для проведения строительно-монтажных и других работ в труднодоступной мест­ности.

Рис. 1.1. Вертолет Ми-8 (общий вид)

Вертолет (рис. 1.1) спроектирован по одновинтовой схеме с пятилопастным несущим и трехлопастным рулевым винтами. На вертолете установле­ны два турбовинтовых двигателя ТВ2-117А со взлетной мощностью 1500 л.с. каждый, что обеспечивает высокую безопасность полетов, так как полет воз­можен и при отказе одного из двигателей.

Вертолет эксплуатируется в двух основных вариантах: пассажирском Ми-8П и транспортном Ми-8Т. Пассажирский вариант вертолета предназна­чен для межобластных и местных перевозок пассажиров, багажа, почты и малогабаритных грузов. Он рассчитан на перевозку 28 пассажиров. Тран­спортный вариант предусматривает перевозку грузов массой до 4000 кг или пассажиров в количестве 24 человек. По желанию заказчика пас­сажирский салон вертолета может быть переоборудован в салон с по­вышенным комфортом на 11 пассажиров.

Пассажирский и транспортный варианты вертолета могут быть переобо­рудованы в санитарный вариант и в вариант для работы с внешней подвеской.

Вертолет в санитарном варианте позволяет перевозить 12 лежачих боль­ных и сопровождающего медработника. В варианте для работы с внешней подвеской осуществляется перевозка крупногабаритных грузов массой до 3000 кг вне фюзеляжа.

Для перелетов вертолета на большие дальности предусмотрена установка в грузовой кабине одного или двух дополнительных топливных баков.

Существующие варианты вертолета снабжены электролебедкой, позво­ляющей с помощью бортовой стрелы производить подъем (спуск) на борт вер­толета грузов массой до 150 кг, а также при наличии полиспаста затягивать в грузовую кабину колесные грузы массой до 3000 кг.

Экипаж вертолета состоит из двух пилотов и бортмеханика.

При создании вертолета особое внимание было уделено высокой надежно­сти, экономичности, простоты в обслуживании и эксплуатации.

Безопасность полетов на вертолете Ми-8 обеспечивается:

Установкой на вертолете двух двигателей ТВ2-117А(АГ), надежностью работы этих двигателей и главного редуктора ВР-8А;

Возможностью совершать полет в случае отказа одного из двигателей, а также перейти на режим авторотации (самовращения несущего винта) при отказе обоих двигателей;

Наличием отсеков, изолирующих двигатели и главный редуктор с по­мощью противопожарных перегородок;

Установкой надежной противопожарной системы, обеспечивающей туше­ние пожара в случае его возникновения как одновременно во всех отсеках, так и в каждом отсеке в отдельности;

Установкой дублирующих агрегатов в основных системах я оборудовании вертолета;

Надежными и эффективными противообледенительными устройствами ло­пастей несущего и рулевого винтов, воздухозаборников двигателей и лобо­вых стекол кабины экипажа, что позволяет совершать полет в условиях об­леденения;

Установкой аппаратуры, обеспечивающей простое и надежное пилотиро­вание и посадку вертолета в различных метеорологических условиях;

Приводом основных агрегатов систем от главного редуктора, обеспечива­ющим работоспособность систем при отказе двигателя:

Возможностью быстрого покидания вертолета после его посадки пасса­жирами и экипажем в аварийных случаях.

2. ОСНОВНЫЕ ДАННЫЕ ВЕРТОЛЕТА

Летные данные

(транспортный и пассажирский варианты)

Взлетная масса (нормальная), кг.............. 11100

Максимальная скорость полета (по прибору), км/ч, 250

Статический потолок, м............................ 700

Крейсерская скорость полета по прибору на высоте
500 м, км/ч ………………………………………………220

Экономическая скорость полета (по прибору), км/ч. 120


топливом 1450 кг, км................................ 365


варианте с заправкой топливом 2160 кг, км. . .620

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 2870 кг, км... 850

Дальность полета (на высоте 500 м) с заправкой
топливом 2025 кг (подвесные баки увеличенной
вместимости), км................................................ 575

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 2735 кг (подвес­ные баки

увеличенной вместимости), км.... 805

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 3445 кг (подвесные баки

увеличенной вместимости), км.... 1035

Примечание. Дальность полета рассчитана с учетом 30-минутного остатка топлива после посадки

Геометрические данные

Длина вертолета, м:

без несущего и рулевого винтов.................. 18,3

с вращающимися несущим и рулевым винтами …25,244

Высота вертолета, м:

без рулевого винта........................................ 4,73

с вращающимся рулевым винтом................ 5,654

Расстояние от конца лопасти несущего винта до ­
хвостовой балки на стоянке, м..................... 0,45

Расстояние от земли до нижней точки фюзеляжа

(клиренс), м................................................... 0,445

Площадь горизонтального оперения, м 2 ….. 2

Стояночный угол вертолета................. 3°42"

Фюзеляж

Длина грузовой кабины, м:

без грузовых створок............................ 5,34

с грузовыми створками на уровне 1 м от пола 7,82

Ширина грузовой кабины, м:

на полу................................................... 2,06

по коробам отопления........................... 2,14

максимальная......................................... 2,25

Высота грузовой кабины, м.................. 1,8

Расстояние между силовыми балками пола, м … 1,52

Размер аварийного люка, м…………………… 0,7 X1

Колея погрузочных трапов, м.............. 1,5±0,2

Длина пассажирской кабины, м............ 6,36

Ширина пассажирской кабины (по полу), м... 2,05

Высота пассажирской кабины, м 1,8

Шаг кресел, м.................................................. 0,74

Ширина прохода между креслами, м... 0,3

Размеры гардероба (ширина, высота, глубина), м 0,9 X1,8 X 0,7
» сдвижной двери (ширина, высота), м. . 0,8 X1.4
» проема, по заднюю входную дверь в пассажирском

варианте (ширина, высота), м.......... 0,8 X1>3

Размер аварийных люков в пассажирском

варианте, м............................................. 0,46 X0,7

Размер кабины экипажа, м.................... 2,15 X2,05 X1,7

Регулировочные данные

Угол установки лопастей несущего винта (по указа­телю шага винта):

минимальный................................................. 1°

максимальный........................................ 14°±30"

Угол отгиба триммерных пластин лопастей винта -2 ±3°

» установки лопастей рулевого винта (на r=0,7) *:

минимальный (левая педаль до упора) ................... 7"30"±30"

максимальный (правая педаль до упора)………….. +21°±25"

* r- относительный радиус

Весовые и центровочные данные

Взлетная масса, кг:

максимальная для транспортного варианта …….. 11100

» с грузом на внешней подвеске …………… 11100

транспортный вариант.......................... 4000

на внешней подвеске.............................. 3000

пассажирский вариант (человек).......... 28

Масса пустого вертолета, кг:

пассажирский вариант........................... 7370

транспортный »................................ 6835

Масса служебной нагрузки, в том числе:

масса экипажа, кг................................... 270

» масла, кг........................................................... 70

масса продуктов, кг.............................................. 10

» топлива, кг......................................................... 1450 - 3445

» коммерческой нагрузки, кг............................... 0 - 4000

Центровка пустого вертолета, мм:

транспортный вариант........................................... +133

пассажирский » ....................................... +20

Допустимые центровки для загруженного вертолета, мм:

передняя.................................................................. +370

задняя...................................................................... -95

3. АЭРОДИНАМИЧЕСКИЕ И ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЕРТОЛЕТА

По аэродинамической схеме вертолет Ми-8 представляет собой фюзеляж с пятилопастным несущим, трехлопастным рулевым винтами и неубирающимися шасси.

Лопасти несущего винта прямоугольной формы в плане с хордой, равной 0,52 м. Прямоугольная форма в плане в аэродинамическом отношении счи­тается хуже других, но она проста в производстве. Наличие триммерных пластин на лопастях позволяет изменять их моментные характери­стики.

Профиль лопасти является важнейшей геометрической характеристикой несущего винта. На вертолете подобраны различные профили по длине ло­пасти, что заметно улучшает не только аэродинамические характеристики несущего винта, но и летные свойства вертолета. От 1-го до 3-го сечения при­менен профиль NACA-230-12, а от 4-го до 22-го - профиль NACA-230-12M (модифицированный) *. У профиля NACA-230-12M число Мкр = 0,72 при угле атаки нулевой подъемной силы. При увеличении углов атаки a°(рис. 1.2) Мкр уменьшается и при наивыгоднейшем угле атаки, при котором коэффициент подъемной силы С у = 0,6, Мкр = 0,64. В этом случае крити­ческая скорость в стандартной атмосфере над уровнем моря составит:

V KP == а Мкр = 341 0,64 = 218 м/с, где a- скорость звука.

Следовательно, на концах лопастей мож­но создавать скорость менее 218 м/с, при которой не будет появляться скачков уп­лотнения и волнового сопротивления. При оптимальной, частоте вращения несущего винта 192 об/мин окружная скорость кон­цов лопастей составит:

U = wr = 2 prn / 60 = 213,26 м/с, где w - угловая скорость;

r- радиус окруж­ности, описываемый концом лопасти.

Рис. 1.2. Изменение коэффициента подъемной силы С у от углов ата­ки a° и числа М профиля NACA-230-12M

Отсюда видно, что окружная скорость близка к критической, но не превышает ее. Лопасти несущего винта вертолета име­ют отрицательную геометрическую крутку, изменяющуюся по линейному закону от 5° у 4-го сечения до 0° у 22-го. На участке между 1-ми 4-м сечениями крутка отсутст­вует и установочный угол сечений лопасти на этом участке равен 5°. Крутка лопасти на такую большую величину существенно улучшила ее аэродинамические свойства и летные характеристики вертолета, в связи с чем более равномерно распределяется подъемная сила по длине лопасти.

* Отсек от 3-го до 4-го сечения является пе­реходным. Профиль лопасти несущего винта - смотри рис. 7.5.

Лопасти винта имеют переменную как абсолютную, так и относительную толщину профиля. Относительная толщина профиля с составляет в комле 13%, на участке от г=_0,23до 7=0,268- 12%, а на участке от г = 0,305 до конца лопасти- 11,38%. Уменьшение толщины лопасти к ее концу улучшает аэродинамические свойства вин­та в целом за счет увеличения критиче­ской скорости и Мкр концевых частей ло­пасти. Уменьшение толщины лопасти к концу приводит к уменьшению лобового сопротивления и снижению потребного кру­тящего момента.

Несущий винт вертолета имеет сравни­тельно большой коэффициент заполнения - 0,0777. Такой коэффициент дает возможность создать большую тягу при умеренном диаметре винта и тем самым удерживать в полете лопасти на небольших установочных углах, при которых углы атаки ближе к наивы­годнейшим на всех режимах полета. Это позволило увеличить к. п. д. винта и отодвинуть срыв потока на большие скорости.

Рис. 1.3. Поляра несущего винта вертолета на режиме висения: 1 - без влияния земли; 2 - с влиянием земли.

Аэродинамическая характеристика несущего винта вертолета представ­лена в виде его поляры (рис. 1.3), которая показывает зависимость коэффи­циента тяги Ср и коэффициента крутящего момента т кр от величины общего шага несущего винта <р. По поляре видно, что чем больше общий шаг несуще­го винта, тем больше коэффициент крутящего момента, а следовательно, больше коэффициент тяги. При наличии «воздушной подушки» тяга несущего винта будет больше, чем без нее при том же шаге винта и коэффициенте кру­тящего момента.

Лопасти рулевого винта прямоугольной формы в плане с профилем NACA-230M не имеют геометрической крутки. Наличие у втулки рулевого винта совмещенного горизонтального шарнира типа «кардан» и компенсатора взмаха позволяет обеспечить более ровное перераспределение подъемной си­лы по ометаемой винтом поверхности в полете.

Фюзеляж вертолета аэродинамически несимметричен. Это видно из кри­вых изменения коэффициентов подъемной силы фюзеляжа С 9ф и лобового сопротивления С в зависимости от углов атаки а ф (рис. 1.4). Коэффици­ент подъемной силы фюзеляжа равен нулю при угле атаки несколько больше 1 , поэтому и подъемная сила будет по­ложительной на углах атаки больше Г, а на углах атаки меньше 1 -отрицательной. Минимальное значение коэффициента лобо­вого сопротивления фюзеляжа С будет при угле атаки, равном нулю. Ввиду того что на углах атаки больше или меньше нуля ко­эффициент С ф увеличивается, выгодно со­вершать полет на углах атаки фюзеляжа, близких к нулю. С этой целью предусмот­рен угол наклона вала несущего винта впе­ред, составляющий 4,5°.

Фюзеляж без стабилизатора статически неустойчив, так как увеличение углов ата­ки фюзеляжа приводит к увеличению коэффициента продольного момента, а следовательно, и продольного момента, действующего на кабрирование и стремящегося к дальнейшему увеличению угла атаки фюзеляжа. Наличие стабилизатора на хвостовой балке фюзеля­жа обеспечивает продольную устойчивость последнему лишь на малых установочных углах от +5 до -5° и в диапазоне небольших углов атаки фюзеляжа от -15 до + 10°. На больших углах установки стабилизатора и больших углах атаки фюзеляжа, что соответствует полету на режиме авто­ротации, фюзеляж статически неустойчив. Это объясняется срывом потока со стабилизатора. В связи с наличием у вертолета хорошей управляемости и достаточных запасов управления на всех режимах полета на нем при­менен стабилизатор, не управляемый в полете с установочным углом - 6°.

Рис. 1.4. Зависимость коэффици­ента подъемной силы Суф и лобо­вогосопротивления Схф фюзеляжа от углов атаки a° фюзеляжа

В поперечном направлении фюзеляж устойчив лишь на больших отрица­тельных углах атаки -20° в диапазоне углов скольжения от -2 до + 6°. Это вызвано тем, что увеличение углов скольжения приводит к увеличению коэффициента момента крена, а следовательно, и поперечного момента, стре­мящегося и дальше увеличить угол скольжения.

В путевом отношении фюзеляж неустойчив практически на всех углах атаки при малых углах скольжения от -10 до +10°, на углах, больше указанных, характеристики устойчивости улучшаются. При углах сколь­жения 10° < b < - 10° фюзеляж нейтрален, а при скольжении больше 20° он приобретает путевую устойчивость.

Если рассматривать вертолет в целом, то хотя он и обладает достаточной динамической устойчивостью, но не вызывает больших затруднений при пилотировании даже без автопилота. Вертолет Ми-8 в общем оценен с удов­летворительными характеристиками устойчивости, а с включенными систе­мами автоматической стабилизации эти характеристики значительно улуч­шились, вертолету придана динамическая устойчивость по всем осям и по­этому пилотирование существенно облегчается.

4. КОМПОНОВКА ВЕРТОЛЕТА

Вертолет Ми-8 (рис. 1.5) состоит из следующих основных частей и систем: фюзеляжа, взлетно-посадочных устройств, силовой установки, трансмиссии, несущего и рулевого винтов, управления вертолетом, гидравлической систе­мы, авиационного и радиоэлектронного оборудования, системы отопления и вентиляции кабин, системы кондиционирования воздуха, воздушной и противообледенительной систем, устройства для внешней подвески грузов, такелажно-швартовочного и бытового оборудования. Фюзеляж вертолета включает носовую 2 и центральную 23 части, хвосто­вую 10 и концевую 12 балки. В носовой части, являющейся кабиной экипа­жа, размещены сиденья пилотов, приборные доски, электропульты, автопи­лот АП-34Б, командные рычаги управления. Остекление кабины экипажа обеспечивает хороший обзор; правый 3 и левый 24 блистеры снабжены меха­низмами аварийного сброса.

В носовой части фюзеляжа расположены ниши для установки контейне­ров с аккумуляторами, штепсельные разъемы аэродромного питания, труб­ки приемников воздушного давления, две рулежно-посадочные фары и люк с крышкой 4 для выхода к силовой установке. Носовая часть фюзеляжа от­делена от центральной части стыковочным шпангоутом № 5Н, в стенке которого имеется дверной проем. В проеме двери установлено откидное сиденье борт­механика. Спереди, на стенке шпангоута № 5Н, расположены этажерки ра­дио- и электрооборудования, сзади - контейнеры двух аккумуляторных батарей, коробка и пульт управления электролебедкой.

В центральной части фюзеляжа расположена грузовая кабина, для входа в которую слева имеется сдвижная дверь 22, снабженная механизмом ава­рийного сброса. У верхнего переднего угла проема сдвижной двери снару­жи крепится бортовая стрела. В грузовой кабине вдоль правого и левого бортов установлены откидные сиденья. На полу грузовой кабины располо­жены швартовочные узлы и электролебедка. Над грузовой кабиной разме­щены двигатели, вентилятор, главный редуктор с автоматом перекоса и не­сущим винтом, гидропанель и расходный топливный бак.

К узлам фюзеляжа снаружи крепятся амортизаторы и подкосы главных 6, 20 и передней / стоек шасси, подвесные топливные баки 7, 21. Впереди правого подвесного топливного бака расположен керосиновый обогреватель.

Грузовая кабина заканчивается задним отсеком с грузовыми створками. В верхней части заднего отсека расположен радиоотсек, в котором установ­лены панели под приборы радио- и электрооборудования. Для входа из гру­зовой кабины в радиоотсек и хвостовую балку имеется люк. Грузовые створ­ки закрывают проем в грузовой кабине, предназначенный для закатки и вы­катки колесной техники, погрузки и выгрузки крупногабаритных грузов.

В пассажирском варианте к специальным профилям, расположенным по полу центральной части фюзеляжа, крепятся 28 пассажирских кресел. По правому борту в задней части кабины расположен гардероб. Правая борто­вая панель имеет шесть прямоугольных окон, левая - пять. Задние борто­вые окна встроены в крышки аварийных люков. Грузовые створки в пасса­жирском варианте укороченные, на внутренней стороне левой створки рас­положено багажное отделение, а в правой створке размещены короба под контейнеры с аккумуляторами. В грузовых створках сделан проем под зад­нюю входную дверь, состоящую из створки и трапа.


Рис. 1.5 Компоновочная схема вертолета.

1-передняя нога шасси; 2-носовая часть фюзеляжа; 3, 24-сдвижные блистеры; 4-крышка люка выхода к двигателям; 5, 21-главные ноги шасси; 6-капот обогревателя КО-50; 7, 12-подвесные топливные баки; 8-капоты; 9-редук-торная рама; 10-центральная часть фюзеляжа; 11-крышка люка в правой грузовой створке; 12, 19-грузовые створки; 13-хвостовая балка; 14-стабилизатор; 15-концевая балка; 16-обтекатель; 17-хвостовая опора; 18-трапы; 20-щиток створки; 23-сдвижная дверь; 25-аварийный люк-окно.

К центральной части фюзеляжа пристыкована хвостовая балка, к узлам которой крепится хвостовая опора и неуправляемый стабилизатор. Внутри хвостовой балки в верхней ее части проходит хвостовой вал трансмиссии. К хвостовой балке пристыкована концевая балка, внутри которой установ­лен промежуточный редуктор и проходит концевая часть хвостового вала трансмиссии. Сверху к концевой балке крепится хвостовой редуктор, на ва­лу которого установлен рулевой винт.

Вертолет имеет неубирающееся шасси трехопорной схемы. Каждая стой­ка шасси снабжена жидкостно-газовыми амортизаторами. Колеса передней стойки самоориентирующиеся, колеса главных стоек снабжены колодочными тормозами, для управления которыми вертолет оборудован воздушной сис­темой.

Силовая установка включает два двигателя ТВ2-117А и системы, обеспечивающие их работу.

Для передачи мощности от двигателей к несущему и рулевому винтам, а также для привода ряда агрегатов используется трансмиссия, состоящая из главного, промежуточного и хвостового редукторов, хвостового вала, вала привода вентилятора и тормоза несущего винта. Каждый двигатель и главный редуктор имеют свою автономную маслосистему, выполненную по прямой одноконтурной замкнутой схеме с принудительной циркуляцией мас­ла. Для охлаждения маслорадиаторов двигателей и главного редуктора, стартер-генераторов, генераторов переменного тока, воздушного компрес­сора и гидронасосов на вертолете предусмотрена система охлаждения, со­стоящая из высоконапорного вентилятора и воздухопроводов.

Двигатели, главный редуктор, вентилятор и панель с гидроагрегатами закрыты капотом. При открытых крышках капота обеспечивается свобод­ный доступ к агрегатам силовой установки, трансмиссии и гидросистемы, при этом открытые крышки капота двигателей и главною редуктора являются рабочими площадками для выполнения технического обслуживания систем вертолета.

Вертолет оборудован средствами пассивной и активной защиты от пожара. Продольная и поперечная противопожарные перегородки делят под­капотное пространство на три отсека: левого двигателя, правого двигателя, главного редуктора. Активная противопожарная система обеспечивает пода­чу огнегасящего состава из четырех баллонов в горящий отсек.

Несущий винт вертолета состоит из втулки и пяти лопастей. Втулка имеет горизонтальные, вертикальные и осевые шарниры и снабжена гидравличес­кими демпферами и центробежными ограничителями свеса лопастей. Лопасти цельнометаллической конструкции имеют визуальную систему сигнали­зации повреждения лонжерона и электротепловое противообледенительное устройство.

Рулевой винт толкающий, изменяемого в полете шага. Он состоит из втулки карданного типа и трех цельнометаллических лопастей, снабженных электротепловым противообледенительным устройством.

Управление вертолетом сдвоенное состоит из продольно-поперечного уп­равления, путевого управления, объединенного управления «Шаг - газ» и управления тормозом несущего винта. Кроме того, имеется раздельное уп­равление мощностью двигателей и их остановом. Изменение общего шага не­сущего винта и продольно-поперечное управление вертолетом осуществляют­ся с помощью автомата перекоса.

Для обеспечения управления вертолетом в систему продольного, попе­речного, путевого управления и управления общим шагом включены по не­обратимой схеме гидроусилители, для питания которых на вертолете предус­мотрена основная и дублирующая гидросистемы.

Установленный на вертолете Ми-8 четырехканальный автопилот АП-34Б обеспечивает стабилизацию вертолета в полете по крену, курсу, тангажу и высоте.

Для поддержания в кабинах нормальных температурных условий и чис­тоты воздуха вертолет оборудован системой отопления и вентиляции, кото­рая обеспечивает подачу подогретого или холодного воздуха в кабины эки­пажа и пассажиров. При эксплуатации вертолета в районах с жарким клима­том вместо керосинового обогревателя могут быть установлены два борто­вых фреоновых кондиционера.

Противообледенительная система вертолета защищает от обледенения лопасти несущего и хвостового винтов, два передних стекла кабины экипа­жа и воздухозаборники двигателей.

Противообледенительное устройство лопастей винтов и стекол кабины экипажа - электротеплового, а воздухозаборников двигателей - воздушнотеплового действия.

Установленное на вертолете авиационное и радиоэлектронное оборудова­ние обеспечивает выполнение полетов днем и ночью в простых и сложных ме­теорологических условиях.

За последнее время в мире вертолетной техники произошло несколько значимых событий. Американская компания Kaman Aerospace объявила о намерении возобновить производство синхроптеров, Airbus Helicopters пообещала разработать первый гражданский вертолет с электродистанционным управлением, а немецкая e-volo - испытать 18-роторный двухместный мультикоптер. Чтобы не запутаться во всем этом разнообразии, мы решили составить краткий ликбез по основным схемам вертолетной техники.

Впервые идея летательного аппарата с несущим винтом появилась около 400 года нашей эры в Китае, однако дальше создания детской игрушки дело не пошло. Всерьез инженеры взялись за создание вертолета в конце XIX века, а первый вертикальный полет нового типа летательного аппарата состоялся в 1907 году, спустя всего четыре года после первого полета братьев Райт. В 1922 году авиаконструктор Георгий Ботезат испытал вертолет-квадрокоптер, разработанный по заказу Армии США. Это был первый в истории устойчиво управляемый полет техники такого типа. Квадрокоптер Ботезата сумел взлететь на высоту пяти метров и провел в полете несколько минут.

С тех пор вертолетная техника претерпела множество изменений. Появился класс винтокрылых летательных аппаратов, который сегодня делится на пять типов: автожир, вертолет, винтокрыл, конвертоплан и X-крыло. Все они отличаются конструкцией, способом взлета и полета, управлением несущим винтом. В этом материале мы решили рассказать именно о вертолетах и их основных типах. При этом за основу была взята классификация по компоновке и расположению несущих винтов, а не традиционная - по типу компенсации реактивного момента несущего винта.

Вертолет является винтокрылым летательным аппаратом, у которого подъемная и движущая силы создаются одним или несколькими несущими винтами. Такие винты располагаются параллельно земле, а их лопасти устанавливаются под определенным углом к плоскости вращения, причем угол установки может изменяться в достаточно широких пределах - от нуля до 30 градусов. Установка лопастей на ноль градусов называется холостым ходом винта или флюгированием. В этом случае несущий винт не создает подъемной силы.

Во время вращения лопасти захватывают воздух и отбрасывают его в направлении, противоположном движению винта. В результате перед винтом создается зона пониженного давления, а за ним - повышенного. В случае вертолета так возникает подъемная сила, которая очень похожа на образование подъемной силы фиксированным крылом самолета. Чем больше угол установки лопастей, тем большую подъемную силу создает несущий винт.

Характеристики несущего винта определяются двумя основными параметрами - диаметром и шагом. Диаметр винта определяет возможности вертолета по взлету и посадке, а также отчасти величину подъемной силы. Шаг винта - это воображаемое расстояние, которое воздушный винт пройдет в несжимаемой среде при определенном угле установки лопастей за один оборот. Последний параметр влияет на подъемную силу и скорость вращения ротора, которую на большей части полета летчики стараются держать неизменной, меняя только угол установки лопастей.

При полете вертолета вперед и вращении несущего винта по часовой стрелке, набегающий поток воздуха сильнее воздействует на лопасти с левой стороны, из-за чего возрастает и их эффективность. В результате левая половина окружности вращения винта создает большую подъемную силу, чем правая, и возникает кренящий момент. Для его компенсации конструкторы придумали - это особая система, которая уменьшает угол установки лопастей слева и увеличивает его справа, выравнивая таким образом подъемную силу по обе стороны винта.

В целом, вертолет имеет несколько преимуществ и несколько недостатков перед самолетом. К преимуществам относится возможность вертикального взлета и посадки на площадки, диаметр которых в полтора раза превосходит диаметр несущего винта. При этом вертолет может на внешней подвеске перевозить крупногабаритные грузы. Вертолеты отличаются и лучшей маневренностью, поскольку могут висеть вертикально, лететь боком или задом-наперед, поворачиваться на месте.

К недостаткам же относятся большее, чем у самолетов, потребление топлива, большая инфракрасная заметность из-за горячего выхлопа двигателя или двигателей, а также повышенная шумность. Кроме того, вертолетом в целом сложнее управлять из-за ряда особенностей. Например, летчикам вертолетов знакомы явления земного резонанса, флаттера, вихревого кольца, эффекта запирания несущего винта. Эти факторы могут приводить к разрушению или падению машины.

У вертолетной техники любых схем существует режим авторотации. Он относится к аварийным режимам. Это означает, что при отказе, например, двигателя несущий винт или винты при помощи обгонной муфты отсоединяются от трансмиссии и начинают свободно раскручиваться набегающим потоком воздуха, тормозя падение машины с высоты. В режиме авторотации возможна управляемая аварийная посадка вертолета, причем вращающийся несущий винт через редуктор продолжает раскручивать рулевой винт и генератор.

Классическая схема

Из всех типов вертолетных схем сегодня самой распространенной является классическая. При такой схеме машина имеет только один несущий винт, который может приводиться в движение одним, двумя или даже тремя двигателями. К этому типу, например, относятся ударные AH-64E Guardian, AH-1Z Viper, Ми-28Н, транспортно-боевые Ми-24 и Ми-35, транспортные Ми-26, многоцелевые UH-60L Black Hawk и Ми-17, легкие Bell 407 и Robinson R22.

При вращении несущего винта на вертолетах классической схемы возникает реактивный момент, из-за которого корпус машины начинает раскручиваться в сторону, противоположную вращению ротора. Для компенсации момента используют рулевое устройство на хвостовой балке. Как правило им является рулевой винт, но это может быть и фенестрон (винт в кольцевом обтекателе) или несколько воздушных сопел на хвостовой балке.

Особенностью классической схемы являются перекрестные связи в каналах управления, обусловленные тем, что рулевой винт и несущий приводятся одним и тем же двигателем, а также наличием автомата перекоса и множества других подсистем, ответственных за управление силовой установкой и роторами. Перекрестная связь означает, что при изменении какого-либо параметра работы воздушного винта, поменяются и все остальные. Например, при увеличении частоты вращения несущего винта возрастет и частота вращения рулевого.

Управление полетом осуществляется наклоном оси вращения несущего винта: вперед - машина полетит вперед, назад - назад, вбок - вбок. При наклоне оси вращения возникнет движущая сила и уменьшается подъемная. По этой причине для сохранения высоты полета летчику необходимо менять и угол установки лопастей. Направление полета задается изменением шага рулевого винта: чем он меньше, тем меньше компенсируется реактивный момент, и вертолет поворачивает в сторону, противоположную вращению несущего винта. И наоборот.

В современных вертолетах в большинстве случаев управление полетом по горизонтали осуществляется при помощи автомата перекоса. Например, для движения вперед летчик при помощи автомата уменьшает угол установки лопастей для передней половины плоскости вращения крыла и увеличивает - для задней. Таким образом сзади подъемная сила увеличивается, а спереди - уменьшается, благодаря чему изменяется наклон винта и появляется движущая сила. Такая схема управления полетом применяется на всех вертолетах почти всех типов, если на них установлен автомат перекоса.

Соосная схема

Второй по распространенности вертолетной схемой является соосная. В ней рулевой винт отсутствует, зато есть два несущих винта - верхний и нижний. Они располагаются на одной оси и вращаются синхронно в противоположных направлениях. Благодаря такому решению винты компенсируют реактивный момент, а сама машина получается несколько более устойчивой по сравнению с классической схемой. Кроме того, у вертолетов соосной схемы практически отсутствуют перекрестные связи в каналах управления.

Наиболее известным производителем вертолетов соосной схемы является российская компания «Камов». Она выпускает корабельные многоцелевые вертолеты Ка-27, ударные Ка-52 и транспортные Ка-226. Все они имеют по два винта, расположенных на одной оси друг под другом. Машины соосной схемы, в отличие от вертолетов классической схемы, способны, например, делать воронку, то есть выполнять облет цели по кругу, оставаясь на одном и том же расстоянии от нее. При этом носовая часть всегда остается развернутой в сторону цели. Управление рысканием осуществляется подтормаживанием одного из несущих винтов.

В целом управлять вертолетами соосной схемы несколько проще, чем обычными, особенно в режиме висения. Но существуют и свои особенности. Например, при выполнении петли в полете может случиться перехлест лопастей нижнего и верхнего несущего винтов. Кроме того, в проектировании и производстве соосная схема более сложна и дорога, чем классическая схема. В частности из-за редуктора, передающего вращение вала двигателя на винты, а также автомата перекоса, синхронно устанавливающего угол лопастей на винтах.

Продольная и поперечная схемы

Третьей по популярности является продольная схема расположения несущих винтов вертолета. В этом случае винты располагаются параллельно земле на разных осях и разнесены друг от друга - один находится над носовой частью вертолета, а другой - над хвостовой. Типичным представителем машин такой схемы является американский тяжелый транспортный вертолет CH-47G Chinook и его модификации. Если винты располагаются на законцовках крыльев вертолета, то такая схема называется поперечной.

Серийных представителей вертолетов поперечной схемы сегодня не существует. В 1960-1970-х годах конструкторское бюро Миля разрабатывало тяжелый грузовой вертолет В-12 (также известен, как Ми-12, хотя этот индекс неверен) поперечной схемы. В августе 1969 года прототип В-12 установил рекорд грузоподъемности среди вертолетов, подняв на высоту 2,2 тысячи метров груз массой 44,2 тонны. Для сравнения самый грузоподъемный в мире вертолет Ми-26 (классическая схема) может поднимать грузы массой до 20 тонн, а американский CH-47F (продольная схема) - массой до 12,7 тонны.

У вертолетов продольной схемы несущие винты вращаются в противоположных направлениях, однако это компенсирует реактивные моменты лишь отчасти, из-за чего в полете летчикам приходится учитывать возникающую боковую силу, уводящую машину с курса. Движение в стороны задается не только наклоном оси вращения несущих винтов, но и разными углами установки лопастей, а управление рысканием производится за счет изменения частоты вращения роторов. Задний винт у вертолетов продольной схемы всегда располагается чуть выше переднего. Это сделано для исключения взаимного влияния от их воздушных потоков.

Кроме того, на определенных скоростях полета вертолетов продольной схемы иногда могут возникать значительные вибрации. Наконец, вертолеты продольной схемы оснащаются сложной трансмиссией. По этой причине такая схема расположения винтов распространена мало. Зато вертолеты продольной схемы меньше других машин подвержены возникновению вихревого кольца. В этом случае во время снижения воздушные потоки, создаваемые винтом, отражаются от земли вверх, затягиваются винтом и снова направляются вниз. При этом подъемная сила несущего винта резко снижается, а изменение частоты вращения ротора или увеличение угла установки лопастей эффекта практически не оказывает.

Синхроптер

Сегодня вертолеты, построенные по схеме синхроптера, можно отнести к самым редким и наиболее интересными с конструктивной точки зрения машинами. Их производством до 2003 года занималась только американская компания Kaman Aerospace. В 2017 году компания планирует возобновить выпуск таких машин под обозначением K-Max. Синхроптеры можно было бы отнести к вертолетам поперечной схемы, поскольку валы двух их винтов расположены по бокам корпуса. Однако оси вращения этих винтов расположены под углом другу к другу, а плоскости вращения - пересекаются.

У синхроптеров, как у вертолетов соосной, продольной и поперечной схем, рулевой винт отсутствует. Несущие же винты вращаются синхронно в противоположные стороны, а их валы связаны друг с другом жесткой механической системой. Это гарантированно предотвращает столкновение лопастей при разных режимах и скоростях полета. Впервые синхроптеры были изобретены немцами во время второй мировой войны, однако серийное производство велось уже в США с 1945 года компанией Kaman.

Направлением полета синхроптера управляют исключительно изменением угла установки лопастей винтов. При этом из-за перекрещивания плоскостей вращения винтов, а значит сложения подъемных сил в местах перекрещивания, возникает момент кабрирования, то есть подъема носовой части. Этот момент компенсируется системой управления. В целом же, считается, что синхроптером проще управлять в режиме висения и на скоростях больше 60 километров в час.

К достоинствам таких вертолетов относится экономия топлива за счет отказа от рулевого винта и возможность более компактного размещения агрегатов. Кроме того, синхроптерам характерна большая часть положительных качеств вертолетов соосной схемы. К недостаткам же относится необычайная сложность механической жесткой связи валов винтов и системы управления автоматами перекоса. В целом это делает вертолет дороже, по сравнению с классической схемой.

Мультикоптер

Разработка мультикоптеров началась практически одновременно с работами над вертолетом. Именно по этой причине первым вертолетом, совершившим управляемый взлет и посадку стал в 1922 году квадрокоптер Ботезата. К мультикоптерам относят машины, как правило имеющие четное количество несущих винтов, причем их должно быть больше двух. В серийных вертолетах сегодня схема мультикоптеров не используется, однако она чрезвычайно популярна у производителей малой беспилотной техники.

Дело в том, что в мультикоптерах используются винты с неизменяемым шагом винта, причем каждый из них приводится в движение своим двигателем. Компенсация реактивного момента производится вращением винтов в разные стороны - половина крутится по часовой стрелке, а другая половина, расположенная по диагонали, - в противоположном направлении. Это позволяет отказаться от автомата перекоса и в целом значительно упростить управление аппаратом.

Для взлета мультикоптера частота вращения всех винтов увеличивается одинаково, для полета в сторону - вращение винтов на одной половине аппарата ускоряется, а на другой - замедляется. Поворот мультикоптера производится замедлением вращения, например, винтов, крутящихся по часовой стрелке или наоборот. Такая простота конструкции и управления и послужила основным толчком к созданию квадрокоптера Ботезата, однако последующее изобретение рулевого винта и автомата перекоса практически затормозило работы над мультикоптерами.

Причиной же, по которой сегодня не существует мультикоптеров, предназначенных для перевозки людей, является безопасность полетов. Дело в том, что в отличие от всех остальных вертолетов, машины с несколькими винтами не могут совершать аварийную посадку в режиме авторотации. При отказе всех двигателей мультикоптер становится неуправляемым. Впрочем, вероятность такого события невысока, однако отсутствие режима авторотации является главным препятствием для прохождении сертификации на безопасность полетов.

Впрочем, в настоящее время немецкая компания e-volo занимается разработкой мультикоптера с 18 роторами. Этот вертолет предназначен для перевозки двух пассажиров. Как ожидается, он совершит первый полет в ближайшие несколько месяцев. По расчетам конструкторов, прототип машины сможет находиться в воздухе не больше получаса, однако этот показатель планируется довести по меньшей мере до 60 минут.

Следует также отметить, что помимо вертолетов с четным количеством винтов существуют и мультикоптерные схемы с тремя и пятью винтами. У них один из двигателей расположен на отклоняемой в стороны платформе. Благодаря этому осуществляется управление направлением полета. Впрочем, в такой схеме становится сложнее гасить реактивный момент, поскольку два винта из трех или три из пяти всегда вращаются в одном направлении. Для нивелирования реактивного момента некоторые из винтов вращаются быстрее, а это создает ненужную боковую силу.

Скоростная схема

Сегодня наиболее перспективной в вертолетной технике считается скоростная схема, позволяющая вертолетам летать на существенно большей скорости, чем могут современные машины. Чаще всего такую схему называют комбинированным вертолетом. Машины этого типа строятся по соосной схеме или с одним винтом, однако имеют небольшое крыло, создающее дополнительную подъемную силу. Кроме того, вертолеты могут быть оснащены толкающим винтом в хвостовой части или двумя тянущими на законцовках крыла.

Ударные вертолеты классической схемы AH-64E способны развивать скорость до 293 километров в час, а соосные Ка-52 - до 315 километров в час. Для сравнения, комбинированный вертолет - демонстратор технологий Airbus Helicopters X3 с двумя тянущими винтами может разгоняться до 472 километров в час, а его американский конкурент с толкающим винтом - Sikorksy X2 - до 460 километров в час. Перспективный разведывательный скоростной вертолет S-97 Raider сможет летать на скоростях до 440 километров в час.

Строго говоря, комбинированные вертолеты относятся скорее не к вертолетам, а к другому типу винтокрылых летательных аппаратов - винтокрылам. Дело в том, что движущая сила у таких машин создается не только и не столько несущими винтами, сколько толкающими или тянущими. Кроме того, за создание подъемной силы отвечают и несущие винты, и крыло. А на больших скоростях полета управляемая обгонная муфта отключает несущие винты от трансмиссии и дальнейший полет идет уже в режиме авторотации, при которой несущие винты работают, фактически, как крыло самолета.

В настоящее время разработкой скоростных вертолетов, которые в перспективе смогут развивать скорость свыше 600 километров в час, занимаются несколько стран мира. Помимо Sikorsky и Airbus Helicopters такие работы ведут российские «Камов» и конструкторское бюро Миля (Ка-90/92 и Ми-X1 соответственно), а также американская Piacesky Aircraft. Новые комбинированные вертолеты смогут совместить в себе скорость полета турбовинтовых самолетов и вертикальные взлет и посадку, присущие обычным вертолетам.

Фотография: Official U.S. Navy Page / flickr.com

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!